If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+11y-102=0
a = 1; b = 11; c = -102;
Δ = b2-4ac
Δ = 112-4·1·(-102)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-23}{2*1}=\frac{-34}{2} =-17 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+23}{2*1}=\frac{12}{2} =6 $
| 5x^2−2=6x | | 10.5=2.5+x/10 | | (15b-6)-7(2b+3)=-7 | | 5/7x+8=23 | | 2(3x1)+x=5 | | 33x-2=70 | | 2(3x1)+x=2 | | 289=7-x | | 56-9y=-16 | | 5/6n=-27 | | 3=h+14/8 | | (11x+34)=(15x–2) | | 6f+30=96 | | 1/6=1/8+s | | w+29/8=6 | | 26b=130 | | k-23=184/9 | | 4x−8x−3=6−4x | | 9+3^5x-11=90 | | 21=3(v+2) | | 7/10+b=3 | | `23x-5=21x+5` | | 8=-5.4+b | | 180=12x+82 | | 98=3j—14 | | 5/7z=3/4 | | 14x2-42×=0 | | 16u-8u-6u=16 | | 35p=9 | | 34m=12 | | 9g-8g-g+2g+4g=12 | | 5x2−2=6x |